
Appendix. Mathematical arguments for probability

calculations

Let x be the number of sequence variants in the genome. Each PCR primer pair combi-
nation amplifies one or more sequence variants. Assuming that there is no PCR bias, the
probability of sampling sequence variants will be analogous to the probability of drawing
balls from a big bowl containing balls with an unknown number of different colours (x).

Suppose there are N balls in a bowl. The balls are in x different colours, each in
proportion 1/x. In a sample of n balls k = (k1, . . . , kx) denotes the number of balls of
colour 1, . . . , x. Given x, k follows a generalized hypergeometric distribution.

If N is large, the generalized hypergeometric distribution can be approximated with
the multinomial distribution, that is

f(k1, . . . , kx|x) '
{ (

n
k1k2...kx

)
pk11 p
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0 otherwise,

=

{ ( n
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i=1 ki = n

0 otherwise,

since pi = 1/x for i = 1, . . . , x.
The number of colours, x, is unknown. The Bayesian approach, with a prior π(x) and

xobs the number of colours in the sample, gives the posterior distribution for x as

f(x|k1, . . . , kx) =
f(k1, . . . , kx|x)π(x)∑

x′≥xobs
f(k1, . . . , kx′|x′)π(x′)

, (1)

where the sum in the denominator is over the values of x′ larger than xobs.

Uniform prior of x

Assume a discrete uniform prior of x on {1, 2, . . . ,M}, where M is an integer. The prior
π(x) = 1/M for all possible values of x. The formula (1) will then be

f(x|k1, . . . , kx) =
f(k1, . . . , kx|x) 1

M∑
x′≥xobs

f(k1, . . . , kx′|x′) 1
M

=
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)
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=
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(1/x′)n

, (2)

The estimate of x will be x̂ = argmaxi f(xi|k1, . . . , kxi
) = xobs.
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Sample size

How large sample is needed for the posterior probability of x > xobs to be small enough?
Since x̂ = xobs and P (x < xobs) = 0, this is equivalent to the posterior probability of
x = xobs being large enough, which can be calcuated from (2).

Table 1 give the sample sizes needed for the posterior probability of x = xobs to be
larger than 0.95, given a uniform prior of x on (1, . . . , 10).

Table 1: Sample sizes needed for P (x = x̂) > 0.95 calculated from a discrete uniform
prior of x on {1, 2, . . . , 10}.

x̂ 1 2 3 4 5 6 7 8 9
n 5 8 11 14 17 20 23 26 28

In real data, xobs is often small. Calculating the sample sizes needed for P (x =
x̂|x̂) > 0.95 for xobs ∈ {1, 2, 3, 4} and M = 5 gives the same sample sizes as in Table
1. Letting M increase a priori does not change the sample sizes needed. The reason
is that (2) will be affected only in the denominator by adding terms (1/i)n in the sum.
Denote sm =

∑∞
i=1(1/i)

m. It is known that (see e.g. Beta Mathematics Handbook [63])
s3 ' 1.2021, s5 ' 1.0369 and

s2n =
22n−1π2n

(2n)!
(−1)n−1B2n, (3)

where Bi =Bernoulli numbers. (B8 = −1/30, B14 = 7/6). Therefore, P (x = x̂|x̂ = 1),
will, as M →∞ and n = 5 be

P (x = x̂|x̂ = 1) =
1∑∞

x′=1(1/x
′)n

=
1

s5

' 1

1.0369
> 0.95.

For x̂ = 2 we can calculate the posterior probability of P (x = x̂|x̂ = 2) as M → ∞
and n = 8 as
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P (x = x̂|x̂ = 2) =
(1/2)n∑∞
x′=2(1/x

′)n

=
(1/2)8

s8 − 1

=
(1/2)8

27π8

(8)!
(−1)7B8 − 1

=
(1/2)8

27π8

(8)!
(−1)7(−1/30)− 1

> 0.95.

In the same way we can conclude that P (x = x̂|x̂ = 4) > 0.95, using n = 14, B14 and
M → ∞. For x̂ = 3 we use s11 ' 1.000494, calculated with 3740 terms in the sum, the
next term is less than 5 · 10−40. Using the same kind of calculations as above, the sample
size n = 11 is enough for the posterior probability of x = x̂ to be larger than 0.95. We
therefore conclude that the sample sizes needed are robust for M ≥ 5.
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